BİLİM 14 Aralık 2016
172b OKUNMA     925 PAYLAŞIM

Matematiğin Sanıldığı Kadar Mükemmel Olmadığını Ortaya Çıkaran Keşif: Eksiklik Teoremi

Avusturyalı matematikçi Kurt Gödel'in, 1931 yılında ortaya çıkardığı bu teoreme biraz yakından bakalım.
Kurt Gödel


matematikte kendine referans paradokslarının matematiği yıkabilecek tehlikeye sahip olması kaygısı, bertrand russell ve alfred north whitehead’i döngüsellik yaratmayacak bir matematik inşa etmeye zorladı. özellikle kümeler kuramında, ‘kendi kendini yutan küme’, ‘bütün kümelerin kümesi’ gibi kümeler, paradokslara yol açıyordu. (bkz: russell paradoksu). bu ağır çalışmanın sonucunda 1910 – 1913 yıllarında principia mathematica doğdu. matematik kendine referanslardan arındırılmış, kurtarılmıştı. mutlu son…

ne güzel ki hayat ucube masallar gibi mutlu sonla bitmiyor, hadi dağılın artık gösteri bitti, demiyor.

principia mathematica adlı makinanın doğuşundan yaklaşık 20 yıl sonra, kurt gödel adında bir genç matematikçi, ‘gödel sayılaştırması’ tekniğini keşfetti. hofstadter, gödel sayılaştırmasını “herhangi bir biçimsel dizgedeki simgeler dizilerinin uzun doğrusal düzenlenişlerinin, belli tamsayılar arasındaki matematiksel ilişkiler tarafından tam olarak yansıtıldığı bir haritalama” olarak tarif ediyor. 

iStock.com


gödel sayılaştırmasının en büyük etkisi, “matematiğin kendi hakkında konuşabilmesi” oldu. bir matematiksel dizge ‘hakkındaki’ herhangi bir ifadenin, sayı kuramı içinde incelenebilir hale gelmesi; yani ifadelerin sayılar ve sayıların ilişkilerine dönüştürülebilmesi, ifadelerin kendilerinin de matematik dünyasına girebilmesini sağladı. örneğin, ‘ben principia mathematica’da ispatlanabilirim.’ veya ‘ben principia mathematica’da ispatlanamam.’ gibi ifadelerin doğruluğu, sayı kuramı içerisinde ispatlanabilir hale geldi - ki bu matematiğin kendi dilinde, kendi hakkında konuşabilmesidir. matematiğin kendini algılayıp benlik kazanmasıdır.

ancak bu estetik ve kuvvetli dönüşümün matematik üzerinde özellikle kendisinin ispatlanamazlığını öne süren ikinci ifadedeki şekilde kullanılması, şaşırtıcı sonuçlara neden oldu. giritli paradoksu matematiğin orta yerinde hortladı; “bütün giritliler yalancıdır.” diyen giritli sahneye çıktı. (bkz: epimenides paradoksu)

principia mathematica özel durumu yerine daha genel anlam ifade eden, tipografik sayı kuramı (typographical number theory , tnt) kullanacak olursak;‘ben tnt’de ispatlanamam.’ şeklindeki paradoksal ifadenin (g diyelim) kendisinin principia mathematica’nın teoremlerinden biri olduğunun ispatlanması, klasik mantığımızca kolayca hazmedilemeyecek bir sonuçtur. gödel’in ikinci teoremi, bu ifadenin değillemesinin de (~g diyelim) aynı çelişkiyi oluşturduğunu söylüyor. bu durumda, g nin ne kendisi, ne de değillemesinin doğruluğuna karar verilemiyor. demek ki, tnt gibi tutarlı dizgeler, doğruluğu hakkında karar verilemeyecek teoremlere sahiptir. doğruluğuna karar verilemeyen teoremleri yakalamanın da bir yöntemi olmadığına göre, tutarlı bir dizgede karar verilemeyen teoremlerin sayısı bilinemez. (bu bana sayı doğrusu üzerinde doğal sayılar arasındaki boşlukların rasyonel sayılarla doldurulduğu sanılırken, inanılmaz büyüklükte bir boşlukta reel sayıların ikamet ettiğinin fark edilmesinin şaşkınlığını çağrıştırıyor.) hatta gödel’e göre bu eksiklik tüm tutarlı dizgelerde bulunmak zorundadır.

hofstadter bu zorundalık halini, kitabındaki tosbağa ve akhilleus diyaloglarında çok güzel bir şekilde örneklemiş: (bkz: kontrakrostipunktus). “her bir plakçalar için onun çalamadığı bir plak vardır.” tosbağa, bay yengece, “ben bu plakçalarda çalınamam” isimli bir plak veriyor. çalınmaya başladığında plakçaların mekaniğiyle rezonansa girip mekanizmayı dağıtacak şekilde düzenlenmiş bu plak, gödel’in g teoreminin ta kendisi. plakçalar, plak üzerine kodlanmış bilgiyi ‘tutarlı’ olarak çalmaya çalışırsa, kendi sonunu hazırlıyor. bundan kurtulmanın yollarından birisi olarak da mekanizmayı tutarsız hale getirmek akla geliyor elbette. ancak bu durumda g tipi olmayan ‘masum’ plaklar da doğru bir şekilde çalınamaz. bu ise ilk duruma göre çok daha beterdir, pink floyd plağından seda sayan sesi çıkarmaktır. pespayedir.

tutarlı bir dizge olan principia mathematica da bu zorunluluktan nasibini almış, eksiksizlik iddiasıyla yola çıkmış bu kuram içinde gödel’ci eksikliklerin kaçınılmaz olarak varolduğu anlaşılmıştır.

iStock.com


yine de üzülmeye gerek yok, böyle krizler bilim dünyasında yeni kapıların açılması, bilimin genişlemesi için bir fırsattır. hofstadter, insanların tıpkı 2’nin karekökünün iki tamsayının oranı olarak ifade edilemeyeceğini idrak ettiklerinde, veya kompleks sayıların ‘var olmadıkları ve olamayacakları’ düşünüldüğü halde işe yararlığı ve tutarlılığını kabul etmek zorunda kaldıklarında olduğu gibi, klasik mantıkla ilk önce garipsenecek sonra alışılacak bir sayı tipinin, ‘doğaüstü sayılar’ın bu paradoksal durumları ifade etmekte kullanılabileceğini öne sürüyor. (bir daha böyle uzun cümle yazarsam elim kırılsın!) detayına girmeyelim, ama bu sayıların g ve ~g gibi karar verilemeyen teoremler üzerinden yapılacak çıkarımlarda kullanılan, sonsuz büyüklükteki tamsayılar olduğu ifade ediliyor. ben matematikçi olmadığım için bu ifadeleri zaten anlamıyorum.

aynı teoremin hem roger penrose gibi strong ai düşmanlarının, hem de douglas hofstadter gibi strong ai taraftarlarının favorisi olması ise teoremi kıymetlimiss, bizleri de olan bitenden habersiz shire sakinlerine dönüştürüyor. öylesine güçlü, öylesine kendi başına...